6 research outputs found

    Optimized Hand Geometry-Based Biometric Recognition System

    Get PDF
    In an era characterized by digital interactions and security needs, biometric systems, especially hand geometry-based recognition, offer an advantageous solution. Biometric identification through hand geometry is ideal for low-security applications due to its non-invasive nature and user-friendly features. This research discusses personal identification leveraging hand geometry features, notably without the use of pegs. Such features encompass finger length and width, palm dimensions, deviations, and angles. Image capturing was conducted without pegs. The study contrasts the use of 12 versus 21 hand geometry features. Identification was achieved using the Euclidean distance measure. The outcomes were validated on both a local and a standard database

    Integrating IoT and Novel Approaches to Enhance Electromagnetic Image Quality using Modern Anisotropic Diffusion and Speckle Noise Reduction Techniques

    Get PDF
    Electromagnetic imaging is becoming more important in many sectors, and this requires high-quality pictures for reliable analysis. This study makes use of the complementary relationship between IoT and current image processing methods to improve the quality of electromagnetic images. The research presents a new framework for connecting Internet of Things sensors to imaging equipment, allowing for instantaneous input and adjustment. At the same time, the suggested system makes use of sophisticated anisotropic diffusion algorithms to bring out key details and hide noise in electromagnetic pictures. In addition, a cutting-edge technique for reducing speckle noise is used to combat this persistent issue in electromagnetic imaging. The effectiveness of the suggested system was determined via a comparison to standard imaging techniques. There was a noticeable improvement in visual sharpness, contrast, and overall clarity without any loss of information, as shown by the results. Incorporating IoT sensors also facilitated faster calibration and real-time modifications, which opened up new possibilities for use in contexts with a high degree of variation. In fields where electromagnetic imaging plays a crucial role, such as medicine, remote sensing, and aerospace, the ramifications of this study are far-reaching. Our research demonstrates how the Internet of Things (IoT) and cutting-edge image processing have the potential to dramatically improve the functionality and versatility of electromagnetic imaging systems

    Enhancing Microcomputer Edge Computing for Autonomous IoT Motion Control

    Get PDF
    Devices microprocessors, microcontrollers, and Field Programmable Gate Arrays (FPGA) play the core rule at the IoT edge level and it should be right provisioned. For proper controller performance, control algorithms should be implemented near the actuator eliminating the delay effects. In the IoT domain, this means to implement the mentioned algorithm at the edge level and prior data transmitting. The efficient IoT-enabled motion control can be obtained by considering two main factors; the first factor is from the actuator design point of view and the second factor is from the controller performance point of view. Therefore, in this article, the two mentioned factors are treated concerning the microprocessor rule and importance as a core for proper prototype design and as the main platform to implement the control algorithms. A comparison of controller performance indices for both prototypes is done using previously distributed motion control schemes and newly developed schemes after tuning the respective schemes gains in an optimal manner. The scheme with better behavior of both prototypes are selected for the IoT integration process, this scheme ensures optimal edge computing for the distributed motion control, making the implementation of all control computation take place at the IoT-edge level. As a result, the dynamic pipeline stages (DPS) based prototype gives better controller performance indices for most strategies, less power consumption, and optimally utilized resources encouraging the use of the microprocessors with reconfigurable components at the IoT-edge level

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this  an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    Computer vision based healthcare system for identification of diabetes & its types using AI

    No full text
    Diabetes mellitus, often known as diabetes, is an endocrine disorder that has a wide global impact today. Here is a requirement for an effective model that able prognoses diabetes and its types with more accurateness as early. Given the breadth and depth of existing studies, there is a pressing need for accurate and timely illness forecasting in the healthcare sector. Current circumstances need the creation and design of systems that are quicker to respond, more accurate, more durable, and more generalizable. For increasing the accurateness of prediction with best effectiveness innovative Artificial Intelligence and Machine Learning Model is proposed. This model predicts the diabetes class using the symptoms located into the data-set which is having the row as one rule of the system & this rule are need to understand and compile using feature
    corecore